Public Economics (ECON 131)

Section #2: Empirical Tools and Connecting Theory

to Data
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1 Empirical Tools

In this section we will begin to understand the tools available for us in studying public

finance empirically.

1.1 A First View on OLS: Best fitting Line

Estimating by Ordinary Least Squares (OLS) is a particular way of fitting a line to a set of

points. In particular, OLS fits the line that minimizes the sum of the squares of the distances

to the points. [draw examples of scatterplots and lines which don’t minimize the sum of

squares]

Figure 1: Intro Idea: Best Fitting Line
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Formally, assuming a regression line of the following form:

Yi :ﬁO"‘ﬁlxi"‘ei

(1)

The line minimizes the sum of the squared vertical distances:

min

bO/bl

D (i = (bo + byxi)?

()
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Disability Insurance Example

In the figure below OLS has been used to fit the best line through the scatterplot of states.

Figure 2: Disability Insurance and Labor Market Strength

Employment Shocks and DI Applications: 1993-1998
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The coefficient reveals that a 1 percentage point change in the employment rate is associ-
ated with 0.85 fewer DI applications per person. If this was a causal relation an explanation
could be that during recessions people find it harder to find a job and are more inclined
to apply for disability insurance to get an income.
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1.2 A Second View on OLS: Conditional Expectation Function

A second way of viewing OLS is as the linear Conditional Expectation Function (CEF). In

order to give meaning to this notion we need to first (re-)introduce a few concepts.

1. Expectations

E(Y) =Yy X Proby + Yo X Proby + ... + Yj X Prob; 3)
2. Variance
Var(Y) =E[Y — u, ] (4)
3. Covariance
Cov(X,Y) = E[X — ux][Y - (Uy] %)

The figure below depicts the conditional mean (/expectation) of the logarithm of weekly
wages for each level of education. Note that about half of the mass is on either side of the
dashed line in each of the distributions.

Log weekly earnings, $2003

0 2 4 6 8 10 12 14 16 18 20+
Years of completed education

Since the line looks approximately linear, it does not seem far off to model the conditional
expectation function as linear in this case, i.e.

E[Y;|Xi] = Xip (6)
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To get to our OLS regression, note that by definition

vi = Elyilxi] + (vi — Elyilx:]) (7)
\—zgi—/
=Bo+ P1xi +€; (8)

which in words states that Y; can be decomposed into its Conditional Expectation Function

plus a zero-conditional-mean error.

Regression Output

The table below shows the regression output for log earnings on schooling, equivalent to
the previous figure. Like in the figure the intersect is at 5.84 (= $344 per week), and the
slope is 0.067, i.e. wages increase by 6.7% for each additional year of schooling. The 95%
confidence interval for the slope is (0.0668, 0.0681), and is therefore significantly different

from zero.

. regress earnings school, robust

Source | 55 df MS Number of obs =
————————————— o e F( 1,409433) =
Model | 22631.4793 1 22631.4793 Prob > F =
Residual | 18864B.31 409433 .460755019 RE-squared =
————————————— et Adj R-sguared =
Total | 211279.789 409434 .51602893 Root MSE =
_____________ e
| Robust 0ld Fashicned
gearnings | Coef. Std. Err. t 5td. Err.
_____________ e
school | .0674387 .0003447 195.63 .0003043 221.63
const. | 5.835761 0045507 1282.39 .0040043 1457.38

409435
49118.25
0.0000
0.1071
0.1071
.67879

Example: Height by gender

Let Y = height, X = gender, average male height = 6 ft, average female height =5 ft 4 in.
What is the CEF?
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Rename X to D, our usual name for a dummy variable, and let D = 1 if the person is female,
D = 0 if the person is male. Then E[Y|D] = 6 — % * D (measured in feet). This means that
if we ran OLS we would get o = 6, f1 = —3.
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1.3 A Final View on OLS: Correlation

The correlation between two variables, X and Y, is defined as p xy = %;ny)

What is ﬁl? p1= Covlxy) _ ikl

Var(x) — Pxyo,
In the figure below, the variance of X and Y are roughly equal, so we may ignore the term
i—z. The slopes therefore roughly reflect the correlation between X and Y. When high Y’s
and associated with high X’s, and low Y’s are associated with low X’s, the correlation is
strong and positive, and hence the slope coefficient is high. When all X’s are associated
with roughly the same Y’s, the correlation and hence the slope is close to zero.
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1.4 Diff-in-Diff

When working with OLS there are often issues with determining the direction of causal-
ity. In the example of regressing wages on schooling we cannot tell from the regression
whether a one-year increase in schooling causes a 6.7% increase in wages. This would be
true if the level of schooling was randomly assigned in the population, or if the mechanism
assignment was independent of the level of wages. However, much economic research
claims that this is not true; people with high ability tend to take more education and get
higher wages. This is an example of a missing variable problem in determining causality.
A classic example of reverse causality is a positive correlation between the rate of police
men and crime. An OLS regression of crime rates on police men may give a positive corre-
lation, but the causality may in fact be reverse - i.e. more police men does not cause more

crime, but more crime may cause more police men.

To alleviate these two problems with causality economists like to work with experiments
where the treatment and control groups are (roughly) randomly assigned. If the groups
are randomly assigned, then the difference between their outcomes is the causal effect
of the experiment. With natural experiments the big issue is to determine whether the

treatment and control groups are in fact randomly assigned.

One empirical tool often used to study natural experiments is difference-in-differences.
This is used when a policy affects a group in the population and it is possible to find a
comparable group not affected by the policy. Under diff-in-diff we do not need to assume
that the two groups had identical outcomes prior to the implementation of the experi-
ment, but we do need to assume that the outcomes would have grown in the same way
for the groups if the experiment had not taken place (the parallel trends/common trend

assumption).

The effect of the experiment, under this assumption, is found as

Effect =[After — Beforelrreatment — [After — Be forelcontrol )

which is illustrated in the following graph
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Diff-in-Diff Example Gruber (2000): Canadian Disability Insurance

The figure below show the monthly flat rate (CAD) of the Quebec Pension Plan (QPP) and
the Canada Pension Plan (CPP) over time. It shows that the CPP rate was lower than the
QPP rate in 1973-1986 and then increased to reach the level of the QPP rate in 1987.

o QPP Flat Rate s CPP Flat Rate
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Fic. 1.—Flat-rate portion in Quebec and the rest of Canada

Under the assumption that the labor supply participation rate would grow similarly in
Quebec and the rest of Canada had the QPP rate not changed in 1987 onwards, the effect
of the policy on labor force participation can be found using equation 9. This is done in
the table below. It shows that
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Ef fect =[After —Beforelcpp — [After — Be fore]lopp (10)

= [.217 = .200] — [.246 — .256]
(11)
=0.027 (12)

i.e. under the parallel trend assumption the increase in the flat rate increased the non-

employment rate by 2.7%.

Table of Diff-in-Diff from Gruber

TABLE 1
MEANS
CPP OPP DIFERENCE
=~ IN
Before After Before After DIFFERENCE
(1) (2) (3) (4) (5)
Benefits 5,134 7,776 6,878 7,852 1,668
(17)
Replacement .245 328 336 331 088
rate (.003)
Not em- 200 217 256 246 027
ploved last (.013)
week
Married? 856 .856 817 841 —.024
Any kids <
177 367 351 354 236 002
Less than 9
years of
education 303 274 454 421 004
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2 Connecting Theory to Data: Immigration Example

Say that there is a shock to the labor supply curve caused by sudden immigration, while
the demand curve stays fixed.

What is the effect of immigrants on natives” wages?

Because the demand curve stays fixed, the sudden immigration represents a movement
along the demand curve towards the right.

Wage LD LS LS ’
[—
AW
AS Number of Workers
Regression

From the expression of the demand curve we can derive the following regression

AW =a + BAS +€ (13)

where f < 0. But can we truly find that causal effect of the immigration shock on wages
simply by running this regression?

Questions to consider

1. How do we define (/restrict) the labor market? How “big” is AS?

e Skill Groups?

— Does the influx of immigrants only affect certain skill groups? E.g. blue
collar workers? Then we might want to look only at the blue collar labor
markets.

e [ocal labor markets?

— Are only particular geographical areas affected?
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2. Does Demand shift right as well?

e Larger population = Higher local demand for goods and services =
Higher LP

e Constant £ Ratio = Higher LP

e Trade theory => Higher LP

If so, we won't be able to infer the demand curve from the OLS regression, and it is
not clear whether wages fall.

3. What would have happened to wages otherwise?

¢ [s there an underlying trend in wages due to technology/increases in educa-
tional level/... ?

D’ )
Wage LP L L® LS

AW A e

o
>

AS Number of Workers

What is the effect of immigrants on natives” wages?
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3 Extension Questions

1. Hypothetically, if we had before and after data on health insurance costs for a pri-
vately insuring households, and want to test if the rollout of Obamacare reduced
the growth of healthcare costs. Write an OLS equation that could test for that using
an indicator variable for the period before or after the rollout (takes values of 0 or 1
depending on if the data observation fulfills a condition)? What is an example of a

problem that could make that coeficient not express a causal effect?

2. Suppose different states rolled out the online health insurance exchange websites at
different times. We decide to instead try to use Diff-in-Diffs to test if the rollout of
the online health insurance exchange reduced the growth of healthcare costs. What
is the treatment group? What is the control group? What do you need to check to
see if this method is applicable?

3. Suppose the test before for trends holds. You find the growth of healthcare costs in
states with early online rollouts is 1.8% and the growth in healthcare costs in states

with later rollouts is 2.3%. How would you interpret your results?
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